
Pixel Vault NFT Governance Audit

Table of Contents

1 Pixel Vault NFT Governance Audit
1.1 Overview

1.1.1 Objectives

1.1.2 Scope

I Medium Risk

2 Root Token Security
2.1 Recommendation

3 Signature Replay Vulnerability
3.1 Vulnerability

3.1.1 Code

3.2 Test Case

3.3 Example Exploit

3.4 Recommendation

3.4.1 Additional Recommendation

4 Unmitigated Timelock Admin
4.1 Recommendation

5 Zero Address Delegation
5.1 Vulnerability

5.1.1 Test Case

5.1.2 Auto Delegating

5.1.3 Delegate Function

5.2 Exploit Example

5.3 Recommendation

5.3.1 Additional Recommendation

II Low Risk

6 CommunityId Over�ow DOS
6.1 Vulnerability

6.2 Exploit Example

6.2.1 Example economics of the attack:

6.3 Recommendation:

7 Future Proposal Cancellation
7.1 Vulnerability

7.2 Test Case

7.3 Exploit

7.4 Recommendation

III Informational

8 Admin Events Convention
8.1 Recommendation

9 Admin Modi�er
9.1 Recommendation

10 Cast Votes Readability
10.1 Recommendation

11 Checkpoints Documentation
11.1 Recommendation

12 Checkpoints Optimizations

13 Delegate Centralization

14 Duplicate EIP712 Logic
14.1 Recommendation

15 ERC721Receiver Omission

16 Future Transaction Cancel
16.1 Recommendation

17 Get Actions Validation
17.1 Recommendation

18 Governance UI
18.1 Recommendation

19 Missing Delegate Validation
19.1 Recommendation

20 Proposal Signature Omission
20.0.1 Additional Information

20.1 Recommendation

21 Quorum Documentation
21.1 Recommendation

22 Signature Malleability
22.1 Recommendation

23 Timelock Event Indexing
23.1 Recommendation

24 Token Receiver Documentation
24.1 Recommendation

25 Uint8 Comparison
25.1 Recommendation

26 Unused Queue Event
26.1 Recommendation

27 Unused Quorum Variable
27.1 Recommendation

28 Variable Shadowing
28.1 Recommendation

29 Voting Delay Boundary
29.1 Recommendation

30 Zero Address Transfer
30.1 Recommendation

31 Disclaimer

1 Pixel Vault NFT Governance Audit

Perfect Abstractions conducted a smart contract audit of Pixel Vault's NFT Governance Contracts from September
15th to September 29th, 2022.

The git commit hash used for the audit is eb2fb0f8c1bad2ca6a0ecb344994c3004205feee .

Auditors:

Zac Denham

Audit report reviewed by Nick Mudge.

1.1 Overview

The Pixel Vault NFT governance contracts enable any ERC721 NFT to be used as an opt-in governance token. This
could allow for new forms of utility and coordination amongst NFT holders.

It works by implementing a wrapper token called the "Community Token." End users can lock their NFT in the contract
in exchange for a community token that corresponds to one governance vote. This vote can be delegated to another
address for representation. Community tokens are not tradable on secondary markets (transfers are disabled).

The CommunityToken code makes use of inheritance to modularize functionality. It is broken up into the following
main contracts, with each inheriting the previous:

CommunityToken which is based on ERC721

ERC721Wrapper which handles receiving and disbursing the root token NFT in exchange for community tokens

ERC721WrapperVotes which adds checkpointing for historical vote balances as well as delegation functionality

PVFDWrapperVotes which adds tokenUri functionality

The governance itself is based on Compound's popular "Governor Bravo" contract. More detailed documentation on
compound governance can be found here.

One notable governance gas optimization is that not all "Ballots" are stored on chain. Only the vote totals are
accounted for, and whether a user has voted on a given proposal is packed into one bit at a position that corresponds
to the user's "community id". This optimization reduces the number of "cold" storage slots that need to be updated in
order to vote, in the happy case only requiring one slot to be updated. This effectively decreases the gas cost to vote,
which might in turn incentivize voter participation.

The quorum mechanic also differs from Compound in that it is dynamically calculated so as to account for �uctuating
supply of community tokens vs. Compound which uses a �xed immutable number.

Similar to the community token, governance uses inheritance:

Governor - based on Compound governance, handles the proposal and voting lifecycle

PFVDGovernor - adds dynamic quorum functionality based on community token totalSupply

https://www.perfectabstractions.com/
https://github.com/arr00/nft-governance
https://docs.compound.finance/v2/governance/

This audit is an assessment of the Pixel Vault NFT governance system.

1.1.1 Objectives

1. Find bugs, ine�ciencies and security vulnerabilities in the code base.

2. Make recommendations concerning bugs, ine�ciencies and security vulnerabilities found as well as other
recommendations that may improve the code base.

1.1.2 Scope

The following �les were audited:

contracts/CommunityToken.sol

contracts/ERC721Wrapper.sol

contracts/ERC721WrapperVotes.sol

contracts/Governor.sol

contracts/GovernorEvents.sol

contracts/GovernorTypes.sol

contracts/PVFDGovernor.sol

contracts/PVFDWrapperVotes.sol

contracts/TimeCheckpoint.sol

contracts/TimelockEvents.sol

contracts/TokenReceiver.sol

https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/CommunityToken.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/ERC721Wrapper.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/ERC721WrapperVotes.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/Governor.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/GovernorEvents.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/GovernorTypes.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/PVFDGovernor.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/PVFDWrapperVotes.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/TimeCheckpoint.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/TimelockEvents.sol
https://github.com/arr00/nft-governance/blob/eb2fb0f8c1bad2ca6a0ecb344994c3004205feee/contracts/TokenReceiver.sol

I. Medium Risk

2 Root Token Security

It is worth noting that the wrapper token and governance integrity are highly dependent on the rootToken being
benevolent and bug-free. If a rootToken contract or owner account is compromised or otherwise malicious, critical
governance mechanisms can be bypassed.

For instance, say a malicious root token owner dev mints new tokens (e.g. the BAYC contract has this ability). They
can then accumulate votes and pass proposals to drain treasuries dictated by the governance mechanism.

Similarly, if the root token contract is malicious, it might make arbitrary calls to onERC721Received in
ERC721Wrapper.sol so as to mint additional voting units to a given address.

2.1 Recommendation

This list is not exhaustive:

Before implementing PVFDWrapperVotes / PVFDGovernance with a given root token, the token should be
thoroughly audited and investigated. Preferably it should also be immutable and with weak administrative
capabilities.

Although it is not in the base standard, many ERC721 tokens implement an immutable totalSupply function, you
could limit the rootTokens to those that implement this, and use it to better validate against supply manipulation.

Ensure there is not any admin functionality around burning or otherwise transferring root token NFTs, this can lead
to exploits in the wrapper governance.

Ensure there are no external calls in root token "transfer hooks"

Medium Risk

function onERC721Received(

address, /* operator */

address from,

uint256 tokenId,

bytes calldata /* data */

) external virtual override returns (bytes4) {

require(

msg.sender == address(rootToken),

"ERC721Wrapper::onERC721Received: NFT not root NFT"

);

_mint(from, tokenId);

_onTokenWrap(from, 1);

return IERC721Receiver.onERC721Received.selector;

}

https://github.com/arr00/nft-governance/blob/master/contracts/ERC721Wrapper.sol

3 Signature Replay Vulnerability

3.1 Vulnerability

In ERC721Wrapper.sol wrapBySig and unwrapBySig functions, a nonce is passed in both function arguments, but the
nonce's uniqueness is never enforced in the function logic. This leaves these functions open to signature replay
attacks in which the original signature is used again at a later time against end user wishes (given the signature expiry
is high enough).

3.1.1 Code

3.2 Test Case

Medium Risk

function wrapBySig(

uint256 tokenId,

uint256 nonce, // passed here

uint256 expiry,

uint8 v,

bytes32 r,

bytes32 s

) external {

require(

block.timestamp <= expiry,

"ERC721Wrapper::wrapBySig: signature expired"

);

// included in the struct hash

bytes32 structHash = keccak256(

abi.encode(_WRAP_TYPEHASH, tokenId, nonce, expiry)

);

bytes32 digest = keccak256(

abi.encodePacked("\x19\x01", _domainSeparator(), structHash)

);

address signer = ecrecover(digest, v, r, s);

require(

signer != address(0),

"ERC721Wrapper::wrapBySig: invalid signature"

);

// Never verified

_wrap(signer, tokenId);

_onTokenWrap(signer, 1);

}

https://github.com/arr00/nft-governance/blob/master/contracts/ERC721Wrapper.sol

3.3 Example Exploit

It is common for invested third party entities to create user interfaces on top of existing governance contracts. Such
parties will often pay for gas on behalf of end users to perform various governance actions. This helps incentivise
governance participation / gathering of delegate votes etc...

If such a voting interface is malicious, they could have users sign gasless transactions with arbitrarily high expiry
timestamps. This is something non-technical end users may not notice, and even if they are technical the existence of
a nonce in the signature implies one time use. Over time, the malicious entity could "hoard" signatures for use in
government manipulation. Here is an example exploit.

Total Voting Supply: 100

1. Over time, attacker collects 90 "unwrap" signatures from participating voters

2. Attacker creates a proposal: "Drain the treasury and send it all to me"

3. Attacker acquires 6 delegate votes

4. Shortly before proposal start time, attacker replays all 90 "unwrap" signatures.

it('is able to be replayed (test passing is undesirable)', async function () {

await testNFT.mint(accounts[0].address, 1);

await testNFT.mint(accounts[0].address, 2);

await testNFT.setApprovalForAll(erc721WrapperVotes.address, true);

const { chainId } = await ethers.provider.getNetwork();

const sig0 = await accounts[0]._signTypedData(

{

name: 'Wrapped Test Token',

chainId,

verifyingContract: erc721WrapperVotes.address,

},

{

Wrap: [

{ name: 'tokenId', type: 'uint256' },

{ name: 'nonce', type: 'uint256' },

{ name: 'expiry', type: 'uint256' },

],

},

{ tokenId: 1, nonce: 1, expiry: 10e9 }

);

const r0 = '0x' + sig0.substring(2, 66);

const s0 = '0x' + sig0.substring(66, 130);

const v0 = '0x' + sig0.substring(130, 132);

await expect(erc721WrapperVotes.wrapBySig(1, 1, 10e9, v0, r0, s0)).to.not.be

.reverted;

await expect(erc721WrapperVotes.unwrap(1)).to.not.be.reverted;

// replay the same signature and nonce does not revert

await expect(erc721WrapperVotes.wrapBySig(1, 1, 10e9, v0, r0, s0)).to.not.be

.reverted;

});

5. The tokens are unwrapped and voting supply is reduced to 10

�. The proposal starts with total supply of 10, attacker has 6 / 10 votes, and votes to pass the proposal

7. Treasury is drained

This is obviously a worst case scenario, and the likelihood of such an exploit occurring is a function of how often users
wrap and unwrap their tokens, and whether they use a third party interface which sets high expiries.

That being said, there are less catastrophic, but still undesirable results from signature replays being available, such as
third parties being able to wrap tokens which are listed on secondary marketplaces thus removing the listing, and
other forms of quorum or NFT price �oor manipulation.

3.4 Recommendation

Enforce the nonce is unique in both the wrapBySig and unwrapBySig functions:

3.4.1 Additional Recommendation

If the implementer chooses to further reduce the risk of "signature hoarding" outside of replay attacks, the same nonce
mapping can be shared for wrap unwrap and delegate so each new action invalidates any previously saved
signatures. This encourages interfaces to submit signatures in a timely manner to avoid invalidation.

They may also wish to implement an invalidatePendingSignatures function which was callable by end users and
increments the nonce for a given address in order to invalidate pending signatures.

require(

nonce == nonces[signatory]++,

"ERC721Wrapper::wrapBySig: invalid nonce"

);

4 Unmitigated Timelock Admin

While conventionally the contract admin will remain the governor contract itself, there are two functions
(_setPendingAdmin , and _acceptAdmin) exposed in Governor.sol which have the ability to update the admin to any
address. This admin has direct access to timelocking functionality and can schedule arbitrary transactions.

If a malicious actor is able to pass a proposal to grant themselves admin either through honest governance, phishing,
or otherwise, they have arbitrary control over the governance contract and can drain any tokens / ether held in the
contract.

Medium Risk

/**

 * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to

finalize the transfer.

 * @param newPendingAdmin New pending admin.

 */

function _setPendingAdmin(address newPendingAdmin) external {

// Check caller = admin

require(msg.sender == admin, "Governor::_setPendingAdmin: admin only");

// Save current value, if any, for inclusion in log

address oldPendingAdmin = pendingAdmin;

// Store pendingAdmin with value newPendingAdmin

pendingAdmin = newPendingAdmin;

// Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)

emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);

}

/**

 * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin

 */

function _acceptAdmin() external {

// Check caller is pendingAdmin and pendingAdmin ≠ address(0)
require(

msg.sender == pendingAdmin && msg.sender != address(0),

"Governor::_acceptAdmin: pending admin only"

);

// Save current values for inclusion in log

address oldAdmin = admin;

address oldPendingAdmin = pendingAdmin;

// Store admin with value pendingAdmin

admin = pendingAdmin;

// Clear the pending value

pendingAdmin = address(0);

emit NewAdmin(oldAdmin, admin);

emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);

}

https://github.com/arr00/nft-governance/blob/master/contracts/Governor.sol

What is more, there is no throttling on how often a compromised admin might queue transactions via the timelock.
This could come in handy if the attacker is ever in a race with honest governance participants to perform some action,
potentially making exploits more damaging.

For instance, say the governance treasury has some form of immutable income stream. If a malicious admin has
several "withdraw ETH" transactions queued which have already cleared the timelock window, they might have an
advantage over honest governance participants to be �rst to withdraw when new ether lands in the contract. Honest
governance participants are throttled to one active proposal at a time per user, and thus have to coordinate among
several users in order to queue as many transactions as the malicious admin.

4.1 Recommendation

Consider adding some checks and balances on the contract admin in case it is compromised.

For instance, you might implement a "Pause Guardian" address which has the ability to pause admin execution.

Additionally, consider throttling the number of active transactions a timelock admin can queue to one at at time (this
may not be necessary if there is a pause guardian).

bool pausedByGuardian = false;

address pauseGuardian = 0x...;

function _pauseAdminTimelock() {

require(msg.sender === pauseGuardian, "Only pause guardian can pause");

pausedByGuardian = true;

}

function _unpauseAdminTimelock() {

require(msg.sender === pauseGuardian, "Only pause guardian can unpause");

pausedByGuardian = false;

}

function _executeTransaction(

address target,

uint256 value,

bytes memory data,

uint256 eta

) public payable returns (bytes memory) {

require(

msg.sender == admin,

"Governor::executeTransaction: Call must come from admin"

);

require(!pausedByGuardian, "Timelock paused by guardian");

...

5 Zero Address Delegation

5.1 Vulnerability

If a user delegates their votes to the zero address, their votes will be lost and root tokens locked in the wrapper
contract forever.

This edge case occurs due to auto-delegation in ERC721WrapperVotes.sol contract logic when the delegate is unset.
Under certain circumstances described below, this can cause reverts due to under�ow. The logic is somewhat
nuanced so we also provide a test case below to demonstrate the undesirable behavior:

5.1.1 Test Case

Medium Risk

https://github.com/arr00/nft-governance/blob/master/contracts/ERC721WrapperVotes.sol

5.1.2 Auto Delegating

If the user has not delegated votes, the contract logic interprets this as delegating to themselves:

it('Disallows unwrap after delegating to the zero address (test passing demos undesirable

behavior)', async function () {

await testNFT.mint(accounts[0].address, 123);

// wrap

await testNFT['safeTransferFrom(address,address,uint256)'](

accounts[0].address,

erc721WrapperVotes.address,

123

);

// unwrap works initially

await expect(erc721WrapperVotes.unwrap(123)).to.not.be.reverted;

// wrap again

await testNFT['safeTransferFrom(address,address,uint256)'](

accounts[0].address,

erc721WrapperVotes.address,

123

);

const votesBefore = await erc721WrapperVotes.getVotes(accounts[0].address);

await erc721WrapperVotes.delegate(ethers.constants.AddressZero);

const votes = await erc721WrapperVotes.getVotes(accounts[0].address);

expect(votesBefore).to.equal(1);

expect(votes).to.equal(0);

// reverts with underflow

await expect(erc721WrapperVotes.unwrap(123)).to.be.reverted;

// attempt to delegate to self again (essentially no-op)

await erc721WrapperVotes.delegate(accounts[0].address);

// attempt to delegate to another address (reverts)

await expect(erc721WrapperVotes.delegate(accounts[1].address)).to.be.reverted;

// still reverts with underflow, token is locked in the contract

await expect(erc721WrapperVotes.unwrap(123)).to.be.reverted;

});

/**

 * @dev Returns the delegate that `account` has chosen.

 */

function delegates(address account) public view virtual returns (address) {

if (_delegation[account] == address(0)) {

return account;

}

return _delegation[account];

}

5.1.3 Delegate Function

When a user delegates to the zero address, due to auto-delegation oldDelegate will always be interpreted to be a
non-zero address, while delegatee is still the zero address. As a result, the oldDelegate votes are removed, and no
votes are added to the zero address (which is expected).

Once the user has delegated to the zero address, however, their own balance of votes will be zero in
_delegateCheckpoints state. When they try to delegate or unwrap their tokens, the oldDelegate is still interpreted
as non zero via solidity address oldDelegate = delegates(account); and checkpointing variable under�ows
when attempting to subtract from _delegateCheckpoints[oldDelegate] which has a zero balance.

As a result, unwrapping or re-delegating to another address result in reverts and the votes / tokens are essentially
lost.

5.2 Exploit Example

/**

 * @dev Delegate all of `account`'s voting units to `delegatee`.

 *

 * Emits events {DelegateChanged} and {DelegateVotesChanged}.

 */

function _delegate(address account, address delegatee) internal virtual {

address oldDelegate = delegates(account);

_delegation[account] = delegatee;

emit DelegateChanged(account, oldDelegate, delegatee);

_moveDelegateVotes(

oldDelegate,

delegatee,

uint16(userInfos[account].balance)

);

}

/**

 * @dev Moves delegated votes from one delegate to another.

 */

function _moveDelegateVotes(

address from,

address to,

uint16 amount

) private {

if (from != to && amount > 0) {

if (from != address(0)) {

uint16 oldValue = _delegateCheckpoints[from].push(

_subtract,

amount

);

emit DelegateVotesChanged(from, oldValue, oldValue - amount);

}

if (to != address(0)) {

uint16 oldValue = _delegateCheckpoints[to].push(_add, amount);

emit DelegateVotesChanged(to, oldValue, oldValue + amount);

}

}

}

This bug can be exploited by attackers who wish to effectively burn tokens or otherwise manipulate governance by
censoring certain voters. Burning tokens also reduces the NFT supply which due to scarcity can increase the value of
the asset for other token holders. What is more, because this exploit involves interacting directly with the trusted
governance contract, misuse and phishing attacks are more feasible.

An example scenario:

1. An important and controversial governance proposal is created with high stakes for participants

2. Malicious actor solicits participants to "delegate to themselves" by clearing their delegation to "ensure their votes
are appropriately counted". They may even point to the contract logic which reinforces the idea of "auto-
delegation" if your delegation is set to the zero address.

3. Victims tokens are effectively burned and are unable to participate in governance.

A malicious governance UI can accomplish this sort of attack as well via a similar "signature hoarding" strategy as
described in the Signature Replay Vulnerability entry.

5.3 Recommendation

Disallow explicit delegation to the zero address in the delegation logic. If a user wishes to delegate to themselves they
should delegate to their own address. Note that initial auto-delegation will still work with this check in place.

5.3.1 Additional Recommendation

The plural delegates(address) function implies there can be multiple delegates, consider changing the name to
something like delegateOf(address) , which more clearly describes the functionality.

require(delegatee != address(0), "Cannot delegate to zero address")

II. Low Risk

6 CommunityId Over�ow DOS

6.1 Vulnerability

In CommunityToken.sol, the communityId and communityMemberCounter variables are both uint24 variables. This
low value makes it feasible for a malicious governance NFT holder to deny service from other holders by using up all
of the available communityIds.

6.2 Exploit Example

The attacker could accomplish this by transferring their unwrapped nft to a newly generated address, then proceeding
to wrap and unwrap with a new address, causing communityMemberCounter to increment on line 152 of
CommunityToken.sol. The attacker can repeat this until they have reached the upper bound of community ids
available. At that point, no new NFT holders would be able to acquire a CommunityToken due to an over�ow revert.

To be clear, on mainnet this would be a very expensive and slow attack under current conditions and likely infeasible.

6.2.1 Example economics of the attack:

Approximate gas cost to wrap, unwrap, transfer tokens: 300,000 gas.

To use up the available 2^24 tokenIds would cost: 2^24 * 300,000 = 5,033,164,800,000 gas. Note: If someone were
implementing communityToken w/o disabling transfers, you can increment with only ~50,000 gas via transferFrom
so it would be ~1/6 cheaper.

At current gas / eth prices (7PM Saturday, Sep. 17th):

ETH Price: $1456.00

Gas Price: 3 Gwei

The total cost to over�ow the communityIds would be about $22M in gas.

We list this as low risk only if the intent is for the contracts to be used across chains. For instance on Polygon you
could over�ow communityIds for ~$120,000.

6.3 Recommendation:

Modify communityId and communityMemberCounter to uint240 rather than uint24 . This makes
intentional communityMemberCounter over�ow computationally infeasible, even with several orders of magnitude
cheaper gas than any chain currently available. This has the added bene�t of more e�cient slot packing without the
need for padding (which was likely the original intention).

Low Risk

https://github.com/arr00/nft-governance/blob/master/contracts/CommunityToken.sol

7 Future Proposal Cancellation

7.1 Vulnerability

Any user is able to call cancel on a future proposal, causing a ProposalCanceled event to be emitted and the
canceled boolean to be set to true for a given proposal before it is even created.

It is important to note that the canceled variable will be overridden to false when the proposal is actually created.

This works because before a proposal is created, the "proposer" address is the zero address (unset state). The zero
address has no delegate votes and thus will be below the proposal threshold, so anyone can cancel the proposal.

Note that this also works for the invalid zero id proposal, although this is less exploitable.

7.2 Test Case

7.3 Exploit

This bug could be used to confuse government UIs which query cancellation events to display active proposals. While
the governance UI implementation is out of the scope of this audit, it is reasonable to believe a UI might hide
proposals that had emitted cancellation events. A malicious proposer might use this to pre-cancel their proposal and
obfuscate it from governance participants.

As a result, a proposal might receive less participation or review and malicious proposals could be passed that
otherwise would have been promptly defeated.

7.4 Recommendation

There are two state functions in the governance contract, a high level one that accepts proposalId and a lower level
helper which accepts proposal and proposalVote structs.

Throughout the contract, calls are made directly to the lower level function which does not validate proposalId ,
allowing for bugs like cancelling future proposals.

We recommend:

Low Risk

it('can cancel a future proposal (undesirable behavior)', async function () {

await expect(governor.cancel(100))

.to.emit(governor, 'ProposalCanceled')

.withArgs(100);

});

1. Moving proposalCount >= proposalId validation into the lower level function

2. Additionally validating proposalId != 0

This will cause cancel to revert with an invalid proposalId as it calls directly to the lower level state helper.

/**

 * @notice Gets the state of a proposal

 * @param proposalId The id of the proposal

 * @return Proposal state

 */

function state(uint256 proposalId) public view returns (ProposalState) {

Proposal storage proposal = proposals[proposalId];

ProposalVote storage proposalVote = proposalVotes[proposalId];

return state(proposal, proposalVote, proposalId);

}

/**

 * @notice Private function that gets the state of a proposal.

 * @param proposal The proposal struct

 * @param proposalVote The proposal vote struct

 * @return Proposal state

 */

function state(Proposal storage proposal, ProposalVote storage proposalVote, uint256 proposalId)

private

view

returns (ProposalState)

{

require(

proposalCount >= proposalId,

"Governor::state: invalid proposal id"

);

if (proposal.canceled) {

return ProposalState.Canceled;

} else if (block.timestamp <= proposal.startTime) {

return ProposalState.Pending;

} else if (block.timestamp <= proposal.endTime) {

return ProposalState.Active;

} else if (

proposalVote.forVotes <= proposalVote.againstVotes ||

(proposalVote.forVotes +

proposalVote.againstVotes +

proposalVote.abstainVotes) <

proposal.quorum

) {

return ProposalState.Defeated;

} else if (proposal.executed) {

return ProposalState.Executed;

} else if (

block.timestamp >=

proposal.endTime + TIMELOCK_DELAY + TIMELOCK_GRACE_PERIOD

) {

return ProposalState.Expired;

} else if (block.timestamp < proposal.endTime + TIMELOCK_DELAY) {

return ProposalState.Queued;

} else {

return ProposalState.Executable;

}

}

III. Informational

8 Admin Events Convention

Events are a great way for back end systems and user interfaces to stay up to date with the latest governance
changes. They also serve as audit logs for the contract.

In Governor.sol, when a change is made to a governance parameter, an event is emitted, e.g. VotingPeriodSet and
ProposalThresholdSet .

PVFDGovernance, however, breaks this convention and does not emit events when governance parameters around
quorum are modi�ed.

8.1 Recommendation

Declare and emit BaseSupplySet(uint16 count) and QuorumBipsSet(uint16 bips) events when modifying
governance quorum parameters to inform any systems listening for events.

Informational

https://github.com/arr00/nft-governance/blob/master/contracts/Governor.sol
https://github.com/arr00/nft-governance/blob/master/contracts/PVFDGovernor.sol

9 Admin Modi�er

Both Governor.sol and PVFDGovernor.sol frequently gate admin functions with the same block of repeated code,
always at the beginning of the function:

This is a good candidate for a solidity modi�er to improve cleanliness and readability of code.

9.1 Recommendation

Instead of repeating the same block, consider implementing a modi�er to use across functions.

Informational

require(

msg.sender == admin,

"Contract::function: admin only"

);

modifier onlyAdmin() {

require(

msg.sender == admin,

"Admin only"

);

_;

}

https://github.com/arr00/nft-governance/blob/master/contracts/Governor.sol
https://github.com/arr00/nft-governance/blob/master/contracts/PVFDGovernor.sol

10 Cast Votes Readability

castVoteInternal is one of the most important governance functions in the codebase. It is worth ensuring the code
is not only functional, secure, and bug-free, but also highly readable, even self documenting.

Currently, the function spans over 70 lines of logic and has mirrored conditionals on lines 481 and 524:

10.1 Recommendation

The readability of this critical governance function might be improved by breaking the function logic into smaller
discrete components. Speci�cally, the code might bene�t from implementing helpers for packing hasVoted in
lowerVotes vs. upperVotes .

See the below alternative with smaller, discrete functions

Informational

481 if (voterCommunityId < 209) {

...

524 if (voterCommunityId < 209) {

function setHasVotedLower(

ProposalVote storage proposalVote,

uint256 voterCommunityId

) internal {

// bring lowerVotes into the stack

uint208 lowerVotesWord = proposalVote.lowerVotes;

// Bit flag at index voterCommunityId - 1 (since id starts at 1)

// indicates if the voter has voted on this proposal.

bool voted = lowerVotesWord & (1 << (voterCommunityId - 1)) ==

(1 << (voterCommunityId - 1));

require(!voted, "Governor::castVoteInternal: voter already voted");

// Using lower votes word.

proposalVote.lowerVotes =

lowerVotesWord |

uint208(1 << (voterCommunityId - 1));

}

function setHasVotedUpper(

ProposalVote storage proposalVote,

uint256 voterCommunityId

) internal {

// Community id is too large to fit in lowerVotesWord. Therefore,

// pull from the upperWords. Upper words indecies start at 209.

uint256 wordIndex = (voterCommunityId - 209) / 256;

// Get bit index within the word.

uint256 bitIndex = (voterCommunityId - 209) % 256;

uint256 upperVotesWord = proposalVote.upperVotes[wordIndex];

// Bit flag at index bitIndex indicates if the voter has voted on this proposal.

bool voted = upperVotesWord & (1 << bitIndex) == (1 << bitIndex);

require(!voted, "Governor::castVoteInternal: voter already voted");

// Using up votes word.

proposalVote.upperVotes[wordIndex] = upperVotesWord | (1 << bitIndex);

}

function castVoteInternal(

address voter,

uint256 proposalId,

VoteType support

) internal returns (uint16) {

ProposalVote storage proposalVote = proposalVotes[proposalId];

uint256 voterCommunityId = token.getCommunityId(voter);

require(

voterCommunityId != 0,

"Governor::castVoteInternal: voter invalid"

);

if (voterCommunityId < 209) {

setHasVotedLower(proposalVote, voterCommunityId);

} else {

setHasVotedUpper(proposalVote, voterCommunityId);

}

Proposal storage proposal = proposals[proposalId];

Note: The above alternative does add some gas overhead due to additional jump ops, but ends up being cheaper in the
happy case of the communityId being < 209 because it doesn't declare unnecessary variables such as wordIndex .

A similar approach might be used for hasVoted function which has similar logic.

require(

state(proposal, proposalVote) == ProposalState.Active,

"Governor::castVoteInternal: voting is closed"

);

uint16 votes = token.getPriorVotes(voter, uint40(proposal.startTime));

if (support == VoteType.Against) {

proposalVote.againstVotes += votes;

} else if (support == VoteType.For) {

proposalVote.forVotes += votes;

} else {

// must be abstain

proposalVote.abstainVotes += votes;

}

return votes;

}

11 Checkpoints Documentation

The checkpoints documentation copied over from Open Zeppelin is outdated and still refers to block numbers
throughout the library.

11.1 Recommendation

Update the documentation to re�ect the implementation which uses block timestamps.

Informational

/**

 * @dev Returns the value at a given block number. If a checkpoint is not available at that

block, the closest one

 * before it is returned, or zero otherwise.

 */

function getAtTime(History storage self, uint40 timestamp)

12 Checkpoints Optimizations

We noticed three small gas ine�ciencies in the checkpoints library.

1. The getAtTime function calculates an average with (low & high) + (low ^ high) / 2 which could be cheaper
with (low & high) + ((low ^ high) >> 1) . Right shift is cheaper than division and achieves the same result of
divide by two.

2. In the push function pos > 0 can be modi�ed to pos != 0 as pos is unsigned and inequality is cheaper than
comparison.

3. Normal binary search may not be the most e�cient algorithm for �nding the desired past checkpoint in practice.
For the governance checkpointing use case, old checkpoints are likely less relevant as governance proposals have
�nite time periods before they are either executed or defeated. Thus you may save users gas by choosing an
algorithm that is more biased toward recent blocks. Open zeppelin exposes such an algorithm in their latest
checkpointing lib via getAtProbablyRecentBlock which uses len - Math.sqrt(len); for the midpoint on large
checkpointing sets. Note that making such a change may not be worth it if you don't foresee a high frequency of
delegation as it adds some overhead.

Informational

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Checkpoints.sol

13 Delegate Centralization

NFTs typically have smaller supplies than ERC20 governance tokens. What is more, if root token NFTs have other non
governance utilities, end users may not immediately opt into governance.

As such, there could be a higher risk for delegate centralization than most governance use cases. Even with
benevolent delegates, centralization poses risk in the case that an important wallet with many delegate votes is
compromised. Having votes spread amongst more users allows for better checks and balances and an overall more
secure system.

To combat delegate centralization, the implementer could consider introducing limits on the number of delegate votes
a given address can receive. Something to the tune of the following pseudo-code:

Note: Such an addition adds scope and bug surface area to the contract, which may be undesirable.

Informational

maxDelegates =

delegate(toAddress, toAmount) {

require(currentDelegates + toAmount < maxDelegates, "Max delegates already reached");

}

14 Duplicate EIP712 Logic

ERC721Wrapper.sol inherits Open Zeppelin's EIP712 , then proceeds to re-implement much of the storage and logic
that the parent contract provides.

OZ's abstract contract EIP712 handles storing chainId and the domain typehash. It also has helpers for calculating
domain separators (even in the event of a blockchain fork), as well as creating the signature digest for veri�cation.

14.1 Recommendation

1. Remove the variables _CHAIN_ID , _DOMAIN_SEPARATOR , _DOMAIN_TYPEHASH , as well as the contents within
_domainSeparator() from ERC721Wrapper contract

2. Call on EIP712._domainSeparatorV4() instead of the implemented domain separator.

3. Optionally utilize _hashTypedDataV4(bytes32 structHash) to calculate the typed hash for recovery in
unwrapBySig wrapBySig and delegateBySig in the inheriting contract

Or alternatively, do not inherit OZ's EIP712

Informational

https://github.com/arr00/nft-governance/blob/master/contracts/ERC721Wrapper.sol

15 ERC721Receiver Omission

There is an argument to be made for omitting ERC721Receiver from ERC721Wrapper. The idea is for users to be able
to send their tokens to the contract address to initiate wrapping their token for governance participation. One potential
risk is that this could lead to confusion with end users.

Speci�cally non-technical users may think they can simply send their NFT to the contract address and may not
understand the nuance between safeTransfer and transfer (wrapping and accounting logic can only be
implemented on safeTransfer).

If any user transfers their NFT to the communityToken contract via transferFrom , that NFT will be locked in the
contract and wrapping will not be accounted for. Only having one explicit method for wrap / unwrap might help prevent
confusion on the matter.

Note This risk is highly theoretical. With good communication to end users this could be a non-issue, but is worth
mentioning.

Informational

16 Future Transaction Cancel

An admin address can cancel a transaction before it exists using the timelock functionality in Governor.sol.

By calling _cancelTransaction on a nonexistent transaction hash, a CancelTransaction event is emitted which
might confuse governance UIs.

16.1 Recommendation

Validate the transaction is actually queued before enabling cancel.

require(queuedTransactions[txHash], "Transaction not Queued")

Informational

function _cancelTransaction(

address target,

uint256 value,

bytes memory data,

uint256 eta

) public {

require(

msg.sender == admin,

"Governor::cancelTransaction: Call must come from admin"

);

bytes32 txHash = keccak256(abi.encode(target, value, data, eta));

queuedTransactions[txHash] = false;

emit CancelTransaction(txHash, target, value, data, eta);

}

https://github.com/arr00/nft-governance/blob/master/contracts/Governor.sol

17 Get Actions Validation

In Governor.sol the getActions function does not validate that the proposal id is valid, and will typically just return
zero bytes for targets , values and calldatas .

17.1 Recommendation

Revert if the proposalId is invalid when getActions is called.

Informational

function getActions(uint256 proposalId)

external

view

returns (

address[] memory targets,

uint256[] memory values,

bytes[] memory calldatas

)

{

Proposal storage p = proposals[proposalId];

return (p.targets, p.values, p.calldatas);

}

require(proposalCount >= proposalId && proposalId != 0, "Invalid proposal Id");

https://github.com/arr00/nft-governance/blob/master/contracts/Governor.sol

18 Governance UI

The current implementation of PVFDGovernance is incompatible with third party governance user interfaces such as
Tally.

Supporting different third party interfaces creates redundancy for the UI layer and reduces centralization risk that
could damage governance. It also helps mitigate the damage which can be caused by certain off chain attacks such
as XSS and domain hijacking.

18.1 Recommendation

Consider modifying the contract structure to be compatible with third party UIs and follow established Compound
Governance Bravo fork conventions.

Some of the established conventions can be found here:

https://docs.tally.xyz/user-guides/tally-contract-compatibility/compound-bravo-style

Also see token conventions:

https://docs.tally.xyz/user-guides/tally-contract-compatibility/tokens-erc20-and-nfts

Informational

https://www.tally.xyz/
https://docs.tally.xyz/user-guides/tally-contract-compatibility/compound-bravo-style
https://docs.tally.xyz/user-guides/tally-contract-compatibility/tokens-erc20-and-nfts

19 Missing Delegate Validation

In Governor.sol castVoteInternal validates that the voter must have a communityId

But in ERC721WrapperVotes.sol the end user is able to delegate votes to any address, even if they do not have a
communityId:

19.1 Recommendation

When a user delegates their votes, validate that the delegatee is a valid community member.

Note, this validation also would also alleviate issues around zero address delegation.

Informational

require(

voterCommunityId != 0,

"Governor::castVoteInternal: voter invalid"

);

function _delegate(address account, address delegatee) internal virtual {

address oldDelegate = delegates(account);

_delegation[account] = delegatee;

emit DelegateChanged(account, oldDelegate, delegatee);

_moveDelegateVotes(

oldDelegate,

delegatee,

uint16(userInfos[account].balance)

);

}

require(getCommunityId(delegatee) != 0, "Delegatee cannot vote");

https://github.com/arr00/nft-governance/blob/master/contracts/Governor.sol
https://github.com/arr00/nft-governance/blob/master/contracts/ERC721WrapperVotes.sol

20 Proposal Signature Omission

When a proposal is created, the calldatas , targets , and values are stored on chain and emitted in an event, but
the signatures of the functions to be called are neither stored nor emitted.

Function signatures are useful to know what is going on under the hood in a proposal. By omitting them from the
proposal events and on chain object, although gas is saved, there may be some unintended consequences
downstream.

Namely:

1. It breaks compatibility with governance UIs such as Tally which display function selectors, see their docs on event
signatures here

2. Even if governance UI compatibility is is not a concern, omitting selectors makes it easier for proposers to be
dishonest about what is happening in their proposal. E.G. proposing with an innocuous proposal description when
the underlying function calls are malicious.

20.0.1 Additional Information

Signatures, while helpful for transparency are not foolproof. The end selector used to make a function call is only 4
bytes, which, being a relatively small space can have collisions between two different signatures that hash to the same
end selector.

Informational

proposals[proposalId] = Proposal({

startTime: uint40(startTime), // time will be less than 2**40 until year 36812

endTime: uint40(endTime),

canceled: false,

executed: false,

quorum: currentQuorum(),

proposer: msg.sender,

targets: targets,

values: values,

calldatas: calldatas

});

latestProposalIds[msg.sender] = proposalId;

emit ProposalCreated(

proposalId,

msg.sender,

targets,

values,

calldatas,

startTime,

endTime,

description

);

http://localhost:8000/Informational/Proposal-Signature-Omission/tally.xyz
https://docs.tally.xyz/user-guides/tally-contract-compatibility/compound-bravo-style#event-signatures

Thus attackers who precompute colliding signatures could still mislead proposer reviewers by including a colliding
signature that is different from the real function that is actually implemented in the contract.

Additionally, proposers can still choose to omit the function selector in favor of encoding their own calldata (or the
target contract's fallback function).

All of this is to say, there is not a substitute to inspecting the transaction target itself in the context of the proposed
transaction.

20.1 Recommendation

Keep signatures in the Proposal Event for transparency, it may not be necessary to store them on chain.

Make the propose function which does not accept signatures internal, as to force proposers to go through the
function which includes signatures and encourage providing function signatures.

More generally, follow guidelines around function / event signatures by existing governance UIs if you wish to
maintain compatibility with them, e.g. https://docs.tally.xyz/user-guides/tally-contract-compatibility/compound-
bravo-style#event-signatures

https://docs.tally.xyz/user-guides/tally-contract-compatibility/compound-bravo-style#event-signatures

21 Quorum Documentation

Compound governance quorum is determined by the following condition:

proposal.forVotes < quorumVotes

Where quorumVotes is an immutable constant.

By contrast, PVFD fork quorum is determined by

Where proposal.quorum is determined at proposal time as a function of token supply and quorum bips set by meta-
governance.

The break from Compound convention of quorum being solely determined by forVotes is worth documenting at the
state function level as well as in communications to users. End users might have expectations around what
determines quorum that differ from this implementation.

It is also worth noting that governance UIs such as Tally expect a quorumVotes constant for their quorum display.

21.1 Recommendation

Document the unique quorum calculation in the state function in natspec format

If perfect compatibility with governance UIs is desired, there may need to be more substantial revision to the
quorum mechanic.

Informational

(proposalVote.forVotes + proposalVote.againstVotes + proposalVote.abstainVotes) < proposal.quorum

22 Signature Malleability

Signature malleability occurs when there are multiple valid signatures for the same data and public key.

ecrecover allows for malleable signatures. (r,s,v) and (r,s',v) from two "Y" points for a given "X" on the elliptic
curve.

ecrecover is used throughout the codebase. No meaningful exploits were found as a result of signature malleability.

22.1 Recommendation

Even so, consider using Open Zeppelin's ECDSA library to recover signature public keys, as they have an explicit check
which prevents malleability.

Informational

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/324eda228c07468a0744fc52677e6cebea5dc5c5/contracts/utils/cryptography/ECDSA.sol#L147

23 Timelock Event Indexing

The ExecutedTransaction event has txHash indexed

Indexed event parameters cost more gas, and as such should only be used if useful for search �ltering.

The majority of the time ExecuteTransaction is emitted with a hard coded zero txHash.

Which is not particularly useful for search.

23.1 Recommendation

Remove indexed from txHash or remove txHash altogether. Alternatively, implement two different
ExecuteTransaction events, one with indexing for timelock functionality and one without for proposals.

Informational

event ExecuteTransaction(

bytes32 indexed txHash,

address indexed target,

uint256 value,

bytes data,

uint256 eta

);

emit ExecuteTransaction(0, target, value, callData, proposalEta);

24 Token Receiver Documentation

The documentation for onERC1155BatchReceived and ERC1155Received are swapped

24.1 Recommendation

Appropriately modify the documentation:

Informational

/// @notice Receive ERC1155

function onERC1155BatchReceived(

address,

address,

uint256[] calldata,

uint256[] calldata,

bytes calldata

) external pure virtual returns (bytes4) {

return IERC1155Receiver.onERC1155BatchReceived.selector;

}

/// @notice Receive ERC1155 batch

function onERC1155Received(

address,

address,

uint256,

uint256,

bytes calldata

) external pure virtual returns (bytes4) {

return IERC1155Receiver.onERC1155Received.selector;

}

/// @notice Receive ERC1155 batch

function onERC1155BatchReceived(

address,

address,

uint256[] calldata,

uint256[] calldata,

bytes calldata

) external pure virtual returns (bytes4) {

return IERC1155Receiver.onERC1155BatchReceived.selector;

}

/// @notice Receive ERC1155

function onERC1155Received(

address,

address,

uint256,

uint256,

bytes calldata

) external pure virtual returns (bytes4) {

return IERC1155Receiver.onERC1155Received.selector;

}

25 Uint8 Comparison

In ERC721Wrapper.sol wrap and unwrap functions, the for loop counter is a uint8

uint8 is more expensive than uint256 because it is implicitly upcast to uint256 for each comparison to
tokenIds.length .

25.1 Recommendation

Change uint8 counters to uint256

If the intent is to cap the number of wrappable NFTs to 255 via over�ow reverts, this intent should be documented
accordingly with a comment.

Informational

function wrapMany(uint256[] calldata tokenIds) external {

for (uint8 i; i < tokenIds.length; i++) {

_wrap(msg.sender, tokenIds[i]);

}

_onTokenWrap(msg.sender, uint16(tokenIds.length));

}

https://github.com/arr00/nft-governance/blob/master/contracts/ERC721Wrapper.sol

26 Unused Queue Event

The event ProposalQueued(uint256 id, uint256 eta); is declared in GovernorEvents.sol but never emitted.

26.1 Recommendation

Remove the unused event.

Informational

https://github.com/arr00/nft-governance/blob/master/contracts/GovernorEvents.sol

27 Unused Quorum Variable

In Governor.sol there is an unused constant QUORUM_VOTES .

27.1 Recommendation

Remove the unused constant.

Informational

https://github.com/arr00/nft-governance/blob/master/contracts/Governor.sol

28 Variable Shadowing

Variable shadowing occurs when a local variable has the same name as a state variable. This is discouraged as it
reduces the readability of the code and is prone to errors. Best practice is to avoid shadowing not only in a given
contract, but also in its inheriting contracts.

The name and symbol constructor arguments shadow inherited state variables from CommunityToken in the
following contracts:

ERC721Wrapper

ERC721WrapperVotes

PVFDWrapperVotes

This was not found to cause any bugs, but does inhibit the readability of the contract.

28.1 Recommendation

Rename the constructor arguments and their usages to name_ and symbol_ in the above contracts to eliminate
variable shadowing.

Informational

29 Voting Delay Boundary

The lower boundary for voting delay is 1 second:

The idea behind the voting delay is to enable users time to react to a new proposal and allocate their votes accordingly
before voting balances are tallied at proposal start time.

One second does not offer enough time for human reaction. Having voting delay at such a low value could introduce
unwanted game theory around proposal creation timing. Proposers would likely attempt to game the voting
distribution by proposing when they have an advantage.

29.1 Recommendation

Increase the MIN_VOTING_DELAY lower boundary to something that affords human reaction, like 1 hour (or even 12
hours to cover all timezones).

In practice, votingDelay is determined via meta-governance, but this is still a useful boundary to maintain fair global
access to governance.

Informational

/// @notice The min setable voting delay

uint40 public constant MIN_VOTING_DELAY = 1 seconds;

30 Zero Address Transfer

In CommunityToken.sol transferFrom and safeTransferFrom do not validate against transferring to the zero
address. This in theory would allow for end users to burn tokens without going through an explicit burn function. It
would also cause the zero address to gain a non-zero token balance. Validating against the zero address is also
described in the ERC721 speci�cation.

In practice transfers are disabled by the inheriting ERC721WrapperVotes.sol so this is a non issue for this use case of
CommunityToken .

30.1 Recommendation

Even so, we recommend validating against the zero address in both transferFrom and safeTransferFrom :

Informational

require(to != address(0), "Cannot transfer to zero addresss");

https://github.com/arr00/nft-governance/blob/master/contracts/CommunityToken.sol

31 Disclaimer

Perfect Abstractions LLC receives payment from clients (the “Clients”) for reviewing code and writing these reports
(the “Reports”).

The Reports are not an accusation or endorsement of any project or team, and the Reports do not guarantee the
security of any project. No Report provides any warranty or representation to any Third-Party in any respect, including
regarding the bug-free nature of code, the business model or proprietors of any such business model, and the legal
compliance of any such business. To remove any doubt, this Report is not investment advice, is not intended to be
relied upon as investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the
security of the project.

The Reports are created for Clients and published with their consent. The scope of our review is limited to the code or
�les that are speci�ed in this report. The Solidity language remains under development and is subject to unknown
risks and �aws. The review does not extend to the compiler layer, or any other areas beyond speci�ed code that could
present security risks.

